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Abstract

In this report we describe a method for verification analysis of a 2-D
Lagrangian, compressible hydrodynamics algorithm based on an unstruc-
tured mesh. The metrics for this verification study are the parameters as-
sociated with asymptotic convergence analysis; in particular, the asymp-
totic convergence rate is highlighted as the main gauge of verification.
For the problems under consideration, the convergence analysis is compli-
cated by two factors: (1) the computational grid evolves in time as part
of the Lagrangian formulation of the underlying equations, and (2) the
cell-based, characteristic length scales of the spatial discretization vary
throughout the unstructured mesh. We present the necessary background
on the relevant mathematical and numerical issues to motiviate this anal-
ysis and provide examples of this process on two problems: one with a
smooth solution and the other with a discontinuous solution. The re-
sults demonstrate the viability of this verification analysis approach for
unstructured mesh calculations.
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1 Introduction

In this report we describe the process of asymptotic convergence analysis for
Lagrangian, compressible hydrodynamics algorithms that involve unstructured,
dynamically evolving meshes. This analysis provides numerical estimates of
the asymptotic convergence rate, which provides a repeatable, quantified metric
for software implementations of certain numerical algorithms. Such quantified
code-convergence characteristics form a foundational part of the evidence by
which the quality of such simulation software is established and tracked.

Convergence analysis of numerical solutions to partial differential equations
(PDEs) is typically performed on algorithms for which the equations have been
discretized on a uniform, fixed mesh [15, 17, 18, 9]. Such regular meshes greatly
simplify both the method and implementation of the asymptotic convergence
analysis. These meshes are associated, e.g., with Eulerian hydrodynamics algo-
rithms for the flow of compressible fluids.

Lagrangian, staggered-grid hydrodynamics algorithms differ significantly from
Eulerian algorithms. Lagrangian methods have a rich history [19] and are known
for their ability to model systems with one-dimensional, convergent fluid-flow
and strong shocks. These algorithms have been adapted to work in two and
three dimensions and on unstructured meshes [2, 4, 5].

It is outside of the scope of this report to provide a detailed explanation
of these multi-dimensional algorithms or the gas dynamics equations that they
model; see the above references for details. There are, however, several key
features of these algorithms that impact verification analysis. The first is an
unstructured mesh: the mesh is defined by a collection of control nodes that are
topologically organized into cells. The mesh is unstructured in the sense that
individual cells may be constructed from an arbitrary, non-uniform number of
nodes. This organization is, however, generally constant in time. The second
important aspect is staggered variable placement: the velocity field is centered
at the control nodes, while the thermodynamic state variables (viz., density,
pressure, and internal energy) are centered at cells and considered constant
and uniform within the cell. The last key feature is the Lagrangian frame of
reference: the gas dynamics equations are framed such that the control nodes’
positions evolve with time and are thought of as being imbedded within the
fluid.

Although these mesh and reference-frame characteristics allow for straight-
forward discretization of the gas dynamaics equations, they present challenges
in the verification of the underlying algorithms. The unstructured mesh and
Lagrangian reference frame imply that cells can be arbitrary polyhedra with
time-varying dimensions, which renders the definition of the characterisic reso-
lution scale of the computational mesh ambiguous. The staggered grid place-
ment of variables means that node- and cell-centered variables require different
methods by which to evaluate the integrals representing the norms of errors in
the calculated quantities.
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In this report, we describe how to overcome these fundamental challenges
by adapting the method of aysmptotic convergence analysis from its well estab-
lished form (i.e., a fixed, structured mesh wighin an Eulerian reference frame)
to application on Lagrangian hydrodynamics algorithms.1 The fundamental
notions and procedures are presented in §2, which contains an explanation of
global asymptotic convergence analysis for Lagrangian, unstructured-mesh al-
gorithms. §3 contains convergence analysis for a 2-D smooth problem, while §4
presents the corresponding results for a 2-D nonsmooth problem. The compu-
tational results in these two sections were obtained with ASCI Shavano project
codes. We summarize the contents of this report in §5.

2 Global Convergence Analysis on Unstructured
Meshes

The axiomatic premise of asymptotic convergence analysis is that the norm of
the difference between the exact and computed solutions can be expanded as a
function of some measure of the spatial and temporal zone sizes. In the follow-
ing subsections, we describe this assumption in detail and provide algorithmic
descriptions of how these concepts are implemented numerically for Lagrangian
unstructured-mesh algorithms.

2.1 Unstructured-Mesh Convergence in One Dimension

For PDEs discretized in time and a single spatial coordinate, the fundamental
ansatz of asymptotic convergence analysis assumes the following form (see, e.g.,
[8]):

||ξ∗ − ξ|| = A (∆x̃)
q

+ B
(
∆t̃
)r

+ o
(

(∆x̃)
q
,
(
∆t̃
)r)

, (1)

where ξ∗ is the exact solution value; ξ is the value computed on the grid
for which ∆x̃ and ∆t̃ provide measures, respectively, of the spatial zone size
and temporal step size of the computational mesh; A is the spatial conver-
gence coefficient ; q is the spatial convergence rate; B is the temporal conver-
gence coefficient ; and r is the temporal convergence rate. By the notation

“o
(

(∆x̃)
q
,
(
∆t̃
)r)

” we mean terms that approach zero faster than (∆x̃)
q

and
(
∆t̃
)r

as both ∆x̃ and ∆t̃ becomes vanishingly small (i.e., as ∆x̃, ∆t̃ → 0+).
In the following, we also refer to these vanishingly small terms as “higher order
terms” or H.O.T. We note parenthetically that one could employ the Method of
Manufactured Solutions (MMS) to obtain exact solutions of an inhomogenous

1The approach described herein would also be applicable, with minor modification, to ALE
(Arbitrary Lagrangian-Eulerian) [11] and AMR (Adaptive, Mesh Refinement) algorithms.
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set of equations that is related to the equations of interest; Salari & Knupp [18]
and Knupp & Salari [9] provide introductions to this technique.

The “measures” of the spatial and temporal computational meshes in Eq. 1,
i.e., ∆x̃ and ∆t̃, respectively, have a particular and important meaning. For
example, in a dynamically evolving 1-D mesh, the computational domain will
consist of cells of various lengths; these cells likely become elongated or short-
ened in the course of the calculation. Verification analysis, however, requires a
single, scalar characterization of the 1-D extent of all mesh cells. For example,
three measures of the spatial extent of the zones, are the minimum, maximum,
and mean over the set of the lengths of all zones in the mesh. The identification
of characteristic scalar spatial and temporal scales for a calculation involving
irregular cell sizes and nonuniform timesteps is one significant feature that dis-
tinguishes the present verification analysis.

The norm in Eq. 1 is the functional || · || that maps its argument, a function,
to the non-negative real numbers and obeys the appropriate functional analytic
properties. The standard definition for the Lp functional norm of a function f
that depends on a single spatial variable on the interval [a, b] is

||f ||p ≡
[

1

L

∫ b

a

dx |f(x)|p
]1/p

, (2)

where L ≡ b−a; according to this definition, the units of ||f ||p are identical to
the units of f . From Eq. 2, the standard L1, L2, and L∞ norms are defined as

||f ||1 ≡ 1

L

∫ b

a

dx |f(x)| , (3)

||f ||2 ≡
√

1

L

∫ b

a

dx |f(x)|2 , and (4)

||f ||∞ ≡ max
x∈[a,b]

|f(x)| , (5)

the last of which is independent of any integral and is trivial to evaluate numer-
ically.

In the application at hand, the argument of the norm is not an abstract
function, but a collection of numerical values on a computational mesh. To
numerically approximate the integral on the interval [a, b], first assume there
are Nc points xi, i = 1, . . . , Nc, one each at the geometric center2 of a zone
of length ∆xi. This assumption applies, e.g., in the case of the density and
pressure fields for typical Lagrangian, staggered-grid hydrodynamics codes. The

2More generally, the position of this single quadrature point need not be at the cell center
but could be an appropriately defined cell centroid.

4



        

simplest quadrature scheme is then to approximate such integrals as follows:

1

L

∫ b

a

dx g(x)
.
=

1

b− a

Nc∑

i=1

g(xi) ∆xi . (6)

With this assumption, the L1 and L2 in Eqs. 3 and 4 are evaluated as:

||f ||1 ≡ 1

L

Nc∑

i=1

|f(xi)|∆xi , (7)

||f ||2 ≡

√√√√ 1

L

Nc∑

i=1

|f(xi)|2 ∆xi . (8)

It is quantities such as these that are used to generate numerical estimates of
the left-hand side of Eq. 1.

Staggered-grid Lagrangian hydrodynamics algorithms [19] define the velocity
field at the Nv vertices of the computational cells, as opposed to the Nc cell
centers. Consequently, a slightly different procedure is required to numerically
approximate the integrals of these values. Assume now that there are Nv
points, xi, i = 1, . . . , Nv, one each at the mesh vertex, which lies between the
two cells whose extents are ∆xi−1/2 and ∆xi+1/2. The approach we follow
approximates the normalized integral of such function values as:

1

L

∫ b

a

dx g(x)
.
=

1

L

Nv∑

i=1

g(xi)
(
∆xi−1/2 + ∆xi+1/2

)
, where (9)

L ≡
Nv∑

i=1

(
∆xi−1/2 + ∆xi+1/2

)
, (10)

and ∆xi−1/2 ( ∆xi+1/2 ) is the length of the zone to the left (right) of xi that
has xi as a vertex. Equations 9 and 10 assume an effective vertex-centered
cell-size consisting of the sum of both cells adjacent to the vertex. This over-
assignment of the cell sizes that weight g(xi) in Eq. 9, however, is normalized
by the corresponding effective total length as computed in Eq. 10. While other
options for defining vertex-centered cell sizes in these approaches are possible
(using, e.g., vertex control volumes), the approach expressed in Eqs. 9 and 10
suffices for the present demonstration of Lagrangian unstructured-mesh conver-
gence analysis.

According to the fundamental assumption in Eq. 1, the hallmark of a con-
vergent solution is a positive convergence rate: for positive values of q and r
in the above relation, a finer mesh (either spatial or temporal) implies that the
difference between the computed and exact solutions is smaller (i.e., the norm
on the left-hand side of the above equation decreases). Expressed another way,
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the computed solution converges to the exact solution if a smaller error (as mea-
sured by the norm) obtains as more “resources” (e.g., a more refined grid) are
applied in the numerical solution.

A numerical solution computed with a higher convergence rate algorithm on
a given grid may result in a more faithful approximation to the correct solution
than a numerical solution computed with a lower convergence rate algorithm
on the same (or comparable) grid. All else being equal, numerical algorithms
with higher convergence rates are more desirable than lower convergence rates.
Typically, however, “all else” is not equal, as higher convergence rate algorithms
typically consume greater computational resources than algorithms with lower
convergence rates; this tradeoff between accuracy and efficiency is examined in
detail by Rider et al. [16].

2.2 Unstructured-Mesh Convergence in Higher Dimen-
sions

For higher dimensions, the above convergence ansatz generalizes naturally in
the case of a uniform, static mesh, such as those employed, e.g., in the Eulerian
formulation of the gas dynamic equations; see, e.g., [8]. In the present work,
however, we do not have the convenience of that uniformity. Consequently, we
generalize the error ansatz of Eq. 1, viz.,

||ξ∗ − ξ|| = A (∆x̃)
q

+ B
(
∆t̃
)r

+ o
(

(∆x̃)
q
,
(
∆t̃
)r)

, (11)

to higher dimensions by requiring that the symbol x̃ represent a measure of the
generalized 1-D spatial extent for the higher-dimensional mesh cells; the other
parameters are as described in the previous section. The issue of assigning
characteristic length and time scales for a mesh consisting of irregular cells
and non-uniform timesteps lies at the heart of convergence analysis criteria for
unstructured, dynamically evolving meshes.

Some explanation of the important concepts related to the unstructured
mesh and embodied in this description is in order. By “1-D spatial extent”
we mean that this measure has units identical to a single spatial dimension;
for example, this measure must have units, e.g., of cm and not cm2 in 2-D
or cm3 in 3-D computational domains. Correspondingly, by “generalized” 1-D
spatial extent we mean that a 1-D measure is constructed from the n-D data;
for example, in 2-D, where the zones may be, e.g., generalized quadrilaterals, a
1-D measure for a given zone might be the square root of the area of that zone.
For an entire mesh, there will be a set of such values, one corresponding to each
mesh cell. Lastly, we seek to motivate the notion behind the term “measure”
of the generalized 1-D spatial extent. In a compressible Lagrangian calculation,
the initial mesh likely becomes distorted as the calcuation proceeds, with mesh
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cells potentially becoming highly non-uniform geometrically. Three measures of
the “1-D-ness” of the zones, applicable over the entire mesh, would be the square
roots of the minimum, maximum, and mean over the set of areas of all zones
in the mesh; one can easily arrive at other such measures. In a fixed, uniform
mesh calculation, such distinctions are moot, as these measures all reduce to
the same value for the entire mesh for the entire simulation.

The descriptions provided above for approximating 1-D norms extend natu-
rally to the higher dimensions. Specifically, the definition for the Lp functional
norm of the function f defined on the set Ω ⊂ Rn is

||f ||p ≡
[

1

µ(Ω)

∫

Ω

dnx |f(x)|p
]1/p

, (12)

where the notation dnx indicates that the argument x is an n-vector (i.e.,
x ∈ Rn), and µ(Ω) is the measure of the set Ω (e.g., the area in 2-D or the
volume in 3-D). Based on this definition, the L1, L2, and L∞ norms are defined
as

||f ||1 ≡ 1

µ(Ω)

∫

Ω

dnx |f(x)| , (13)

||f ||2 ≡
√

1

µ(Ω)

∫

Ω

dnx |f(x)|2 , and (14)

||f ||∞ ≡ max
x∈Ω
|f(x)| , (15)

the last of which is, again, independent of any integral.
We illustrate the multidimensional norm by considering the case n = 2. In

this case, Ω ⊂ R2, a closed region in the plane. Assume that this domain is the
union of zones, ωα, α = 1, . . . , Nc, that comprise the computational mesh, such
that (i) α 6= β ⇒ ωα ∩ ωβ = ∂ωαβ , which is either the empty set (if the zones
are not contiguous) or two vertices and one curve (typically, a line) between
them (if the zones are contiguous); and (ii) ∪αωα = Ω, i.e., the whole mesh.
Let this set of Nc zones be associated with Nv vertices, V1, . . . , VNv .

The field of numerical quadrature addresses questions related to the numer-
ical approximation of integrals; given the data we have from the hydrocode,
we consider only approximations based locally on a single function evaluation.
For cell-centered values, the simplest of these techniques is to approximate the
general 2-D integral as follows:

1

µ(Ω)

∫

Ω

d2x f(x)
.
=

1

µ(Ω)

Nc∑

α=1

f(xα, yα)µ (ωα) . (16)

Here, µ (ωα) is the area of subregion (i.e., zone) ωα, and the total area µ(Ω)
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is the sum of the areas of the zones in the mesh:

µ(Ω)
.
=

Nc∑

α=1

µ (ωα) . (17)

As in the 1-D case, an important aspect of quadrature schemes is, of course,
where the function evaluation occurs within each sub-region, i.e., where (xα, yα)
is located within ωα. We use the location and function values of the cell-centered
variables as provided in the hydrocode output. This assumption and those of
Eqs. 13 and 14 imply that the L1 and L2 norms become:

||f ||1 ≡ 1

µ(Ω)

Nc∑

α=1

|f(xα, yα)|µ (ωα) , (18)

||f ||2 ≡

√√√√ 1

µ(Ω)

Nc∑

α=1

|f(xα, yα)|2 µ (ωα) , (19)

where µ(Ω) is evaluated according to Eq. 17. All of these quantities can be
evaluated directly with the values output by the hydrocode.

For vertex-centered values, the approach described above to approximate
1-D integrals with weighted averages extends to 2-D as follows:

1

µ(Ω)

∫

Ω

d2x g(x)
.
=

1

µ̃(Ω)

Nv∑

α=1

g(xα, yα) µ̃ (ωα) . (20)

In these expressions, µ̃ (ωα) is given by

µ̃(Ω) =

Nv∑

α=1

µ̃(ωα) with µ̃ (ωα) = µ ({ωβ : ωβ ∩ Vα 6= ∅}) , (21)

where Vα is the αth vertex. In words, µ̃(Ω) is the value determined by looping
over all vertices and incrementing this sum at the αth vertex by the area of all
zones ωβ that share the αth vertex. As described in §2.1 for the 1-D case, this
approach assumes an effective vertex-centered cell-size consisting of the sum of
all cells adjacent to the vertex. This over-assignment of cell areas, however, is
normalized in Eq. 20 by the corresponding effective total area as computed in
Eq. 21.

The approximations in Eqs. 20 and 21 can be generalized using more ac-
curate (e.g., multi-point) quadrature schemes. Additionally, one could employ
a more precise description for defining vertex-centered cell areas (using, e.g.,
vertex control volumes). Notwithstanding these considerations, the approach
expressed in Eqs. 20 and 21 is adequate to demonstrate convergence analysis
for Lagrangian grids.
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2.3 Estimation of Spatial Convergence Parameters for Un-
structured-Mesh Calculations

We herewith restrict our attention to the case of spatial convergence. Further-
more, we implicitly assume that the spatial discretization error dominates the
temporal discretization error. In this situation, the ansatz of Eq. 1 reduces to:

||ξ∗ − ξ|| = A (∆x̃)
q

+ H.O.T. (22)

Recall that x̃ represents a characteristic measure of the generalized 1-D spatial
extent for the set of all mesh cells.

This equation contains two unknown parameters, A and q. We obtain
closed-form solutions for these values by using two computed solutions, one
obtained with a (relatively) coarse mesh (subscripted c) and the other with a
(relatively) fine mesh3 (subscripted f), together with the exact solution (super-
scripted ∗):

||ξ∗ − ξc|| = A (∆x̃c)
q

+ H.O.T. , (23)

||ξ∗ − ξf || = A (∆x̃f )
q

+ H.O.T. (24)

Taking the logarithm of each of these equations,

log ||ξ∗ − ξc|| = logA+ q log (∆x̃c) + · · · , (25)

log ||ξ∗ − ξf || = logA+ q log (∆x̃f ) + · · · , (26)

and subtracting them leads to the following expression for the asymptotic con-
vergence rate:

q
.
= log (||ξ∗ − ξc||/||ξ∗ − ξf ||) / log (∆x̃c/∆x̃f ) . (27)

Substituting this expression back into Eq. 23 provides a numerical estimate of
the convergence coefficient A:

A .
= ||ξ∗ − ξc||/ (∆x̃c)

q
; (28)

one obtains a similar expression with an equivalent numerical result by substi-
tuting the expression for q back into Eq. 24. Since the norm in this expression
is perforce non-negative, and the characteristic length measure is positive, this
relation implies that A must be positive.

Evaluation of Eq. 27 requires the following quantities: (i) the numerical
solution computed on a coarse grid, (ii) the exact solution evaluated at cor-
responding coarse-grid points, (iii) the numerical solution computed on a fine

3The description of the meshes as “coarse” or “fine” is in reference to the initial mesh only:
by the intrinsic nature of Lagrangian calculations, the mesh evolves with the computation, so
that a priori characterizations of the mesh for t > 0 based on the mesh at t = 0 are, at best,
speculative.
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grid, (iv) the exact solution evaluated at corresponding fine-grid points, and
(v) numerical characterizations of the coarse and fine meshes (e.g., number of
cells Nc, cell areas, number of vertices Nv, etc.). With this information, one
evaluates the norms according to the approximation procedures for the required
numerical quadratures, as outlined in the previous sections.

Two additional comments are appropriate. First, we impose that the timestep
in both “coarse” and “fine” calculations be equal and that the number of com-
putational timesteps in these calcuations likewise be the same; these restrictions
ensure that the calculations are evaluated at the identical final time. Second,
we observe that, according to the discussion provided in §2.2, different methods
by which to assign values to the characteristic lengths ∆x̃c and ∆x̃f may lead
to different values for the quantifiable convergence metrics, viz., A and q. In
the following sections, we provide examples of this analysis.

3 Convergence Analysis of a Smooth Problem

In this section, we restrict the notions of the previous section to two dimensions
and demonstrate the verification analysis of a hydrodynamics calculation on
a non-uniform grid, using a Lagrangian formation of the governing equations.
For the numerical computations, an ASCI Shavano project code was employed.
The hydrodynamics algorithm is a control volume, staggered-grid, compatible,
Lagrangian method [2, 4]. The salient mesh and reference-frame features of this
hydrodynamics algorithm are described in §1.

3.1 Exact Solution of a Smooth Problem

The initial conditions for this two-dimensional, Cartesian geometry problem
consist of sinusoidal distributions of density, pressure, and velocity that are
perturbations about constant, uniform values. For sufficiently small initial am-
plitude, the sinusoidal density, pressure, and velocity distributions oscillate,
undisturbed, as a standing acoustic wave; see, e.g., Landau and Lifschitz [10] or
Whitham [20] for details. This solution satisfies the linear acoustics equations,
which are first-order linearizations of the full compressible hydrodynamics equa-
tions. More precisely, it is assumed that there are uniform, constant density ρ0,
pressure p0, and velocity (u0, v0) fields about which there are small perturba-
tions (in a manner to be made precise). Identifying these perturbations with a
prime (′), we expand these fields as follows:

ρ = ρ0 + ρ′ , (29)

p = p0 + p′ , (30)

(u, v) = (u0, v0) + (u′, v′) . (31)

The specific internal energy, e, is related to the density and pressure through
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the standard polytropic gas relation

p = (γ − 1) ρ e . (32)

This relation is used to express the quiescent sound speed, c0, as

c20 = γp0/ρ0 = γ (γ − 1) e0 . (33)

It is this quantity that permits an ordering of all the terms in Eqs. 29–31: the
primed quantities are small in the sense that

ρ′/ρ0 ¿ 1 , p′/p0 ¿ 1 , and u′/c0, v
′/c0 ¿ 1 . (34)

Following the development found in references [10] and [20], the solution for
the first-order perturbations can be expressed in terms of the potential ϕ(x, t),
which satisfies the linear wave equation:

∂2ϕ

∂t2
− c20∇2ϕ = 0 . (35)

The velocity perturbation is the gradient of this potential:

(u′, v′) = ∇ϕ =

(
∂ϕ

∂x
,
∂ϕ

∂y

)
. (36)

The pressure and density perturbations are related to temporal derivatives of
the potential as:

ρ′ = −ρ0

c20

∂ϕ

∂t
, (37)

p′ = −ρ0
∂ϕ

∂t
. (38)

We assign the domain of interest to be the square of unit dimension in the
plane, i.e., {(x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1} , and prescribe periodic boundary
conditions along the edge of this region. With this assumption, Eq. 35 can be
solved analytically using separation of variables. The initial conditions are such
that the density and pressure perturbations are identically zero; additionally,
the velocity perturbation undergoes one full spatial period along each boundary
of the domain and has absolute magnitude proportional to ε, which is small in
the sense of the relations in Eq. 34. The temporal dependence is constrained to
be oscillatory with angular frequency ω.

With these constraints, the specific solution for the potential is given as:

ϕ (x, t) =
ε

|k| sin(k · x) cos(ωt) . (39)

In this expression, the wavevector k ≡ kxx + kyy governs the direction and
period of the spatial variation in the solution. From Eqs. 36, 37, and 38, it is
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2-D Smooth Problem Solution

Base (−)0 Perturbed (−)′

u 0 εkxk cos (kxx+ kyy) cos (ωt)

v 0 ε
ky
k cos (kxx+ kyy) cos (ωt)

ρ 1 ερ0ω
kc20

sin (kxx+ kyy) sin (ωt)

p 3/10 ερ0ω
k sin (kxx+ kyy) sin (ωt)

Table 1: Closed-form expressions for the base (0) and perturbed (′) solutions for the
x-component of velocity (u), y-component of velocity (v), the density (ρ), and the

pressure (p), where k ≡ |k| =
(
k2
x + k2

y

)1/2
.

2-D Smooth Problem Initial Parameters

γ kx ky ω ε

5/3 2π 2π 2π 10−4

Table 2: Parameter values used in the specification of smooth problem considered:
the adiabatic exponent γ used in the polytropic equation of state p = (γ − 1) ρe, the
wavevector k = (kx, ky), the angular frequency ω of the time dependence, together
with amplitude of the components of the initial velocity perturbation (ε). These
quantities completely specify the potential in Eq. 39 and corresponding fields given in
Table 1.

a straightforward task to derive the closed-form expressions for the complete
solution to this problem, which is given in Table 1. The reader is reminded
that the analytic solution, against which the computed solution is compared, is
an exact solution to the Euler equations of gas dynamics only in the limit of
vanishingly small intial perturbation ampliltude.

3.2 Computed Solution of a Smooth Problem

This standing wave problem was considered in the case of two-dimensional
Cartesian geometry. As described above, the problem was assigned on the first
quadrant of (x, y)-plane. The initial grid is given by cells determined by K lines
parallel to the x-axis and L lines parallel to the y-axis. The configurations con-
sidered consisted of K = L = 10, 20, and 40, corresponding to 100, 400, and
1600 cells with 121, 441, and 1681 vertices, respectively. The period of the tem-
poral oscillation is unity, so that the initial state is repeated at t = 0, 1, 2, . . .
This problem was run to a final time of 0.2 with uniform, constant timesteps.

Table 3 contains information about the meshes at the final computational
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2-D Smooth Problem Mesh Statistics at t = 0.2

Mesh 1 Mesh 2 Mesh 3

Nc 100 400 1600

Nv 121 441 1681

Area/Nc 1.00× 10−2 2.50× 10−3 6.25× 10−4

Mean 1.00× 10−2 2.50× 10−3 6.25× 10−4

Minimum 1.00× 10−2 2.50× 10−3 6.25× 10−4

Maximum 1.00× 10−2 2.50× 10−3 6.25× 10−4

Median 1.00× 10−2 2.50× 10−3 6.25× 10−4

Table 3: Statistics for the smooth problem meshes at t = 0.2 for the three resolutions
considered: the number of cells, the number of vertices, the mesh area divided by the
number of cells, and the mean, minimum, maximum, and median of the areas of all
cells in the mesh. All values for a given mesh are identical to the three significant
figures quoted; any differences among the various values appeared in the fourth or
higher significant figure.

time. This table shows the values of the characteristics corresponding to the
total mesh area divided by the number of cells (Area/Nc), and the mean,
minimum, maximum, and median over the set of all cell areas in the (x, y)-
computational plane. For a given mesh, these various values are identical to the
three significant figures tabulated. That all these values are virtually identical
illustrates the minimal mesh distortion incurred in the course of this calculation;
this behavior is consistent both with what one might expect for standing wave
behavior and with the small absolute value of the imposed perturbation.

3.3 Convergence Analysis of a Smooth Problem

An ASCI Shavano project code was used to compute numerical solutions to
the compressible gas dynamics equations for the problem described above. We
consider asymptotic convergence analysis for two cell-centered quantities, the
density and pressure, together with the vertex-centered velocity field. In this
section, we describe the outcome of this investigation and catalogue the results
in several tables.

The calculated norms of the difference between calculated and exact so-
lutions over the computational meshes (as specified in Table 3) are given in
Table 4. Since the problem we consider here is formulated in 2-D Cartesian
geometry, the norm is obtained as an estimate of an (x, y)-plane quadrature,
the evaluation of which follows in a straightforward manner from the procedure
outlined in §2.

These values are used to calculate the corresponding convergence rates and
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2-D Smooth Problem Error Norms

ρ p |(u, v)|
L1 2.5× 10−6 1.2× 10−6 4.9× 10−6

10× 10 L2 2.8× 10−6 1.4× 10−6 5.4× 10−6

L∞ 3.8× 10−6 1.9× 10−6 7.6× 10−6

L1 5.9× 10−7 2.9× 10−7 1.2× 10−6

20× 20 L2 6.6× 10−7 3.3× 10−7 1.4× 10−6

L∞ 9.4× 10−7 4.7× 10−7 1.9× 10−6

L1 1.4× 10−7 7.2× 10−8 3.1× 10−7

40× 40 L2 1.6× 10−7 8.1× 10−8 3.5× 10−7

L∞ 2.4× 10−7 1.2× 10−7 4.9× 10−7

Table 4: L1, L2, and L∞ values of the norm of the difference between the exact and
computed solutions to the smooth problem for the density (ρ), pressure (p), and the
magnitude of the velocity (|(u, v)|) at t = 0.20 for the meshes characterized in Table 3.
These values are computed according to the procedures outlined in §2.

coefficients for the density, pressure, and velocity magnitude. Those results
are compiled in Tables 5 through 7. These tables catalogue values of the con-
vergence rates (q) and coefficients (A), based on different error norms, for the
coarse-to-fine ratios, σ, of the various characteristic mesh length scales based
on the areas given in Table 3. The convergence results in the highlighted rows
demonstrate that the calculations achieved the theoretical second-order spatial
convergence in all norms for all length characterizations. These values are vir-
tually identical for all norms, which is indicative of the fact that these different
norms are equivalent when gauging a completely smooth (C∞) function. The
equivalence of these values for the different length scale measures reflects the
fact that these different measures are virtually identical, as shown in Table 3.
The near-identical behavior for the different fields provides evidence that the
hydrodynamics algorithm is properly implemented for all fields. Overall, this
is compelling verification evidence that this Lagrangian hydrodynamics algo-
rithm is accurately coded for smooth problems in the software that ran these
calculations.

One caveat to this problem is that it tests only the linear characteristic fields
in the governing equations. There are other smooth problems that exercise
the nonlinear fields of the governing equations [3]; however, we have not yet
investigated these more challenging problems.
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Smooth Problem Cell-Centered Density Results

100–400 Cells

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.00 2.00 2.00

L1 rate 2.1 2.1 2.1 2.1 2.1

L1 coeff. 2.8× 10−4 2.8× 10−4 2.8× 10−4 2.8× 10−4 2.8× 10−4

L2 rate 2.1 2.1 2.1 2.1 2.1

L2 coeff. 3.6× 10−4 3.6× 10−4 3.6× 10−4 3.6× 10−4 3.6× 10−4

L∞ rate 2.0 2.0 2.0 2.0 2.0

L∞ coeff. 3.9× 10−4 3.9× 10−4 3.9× 10−4 3.9× 10−4 3.9× 10−4

400–1600 Cells

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.00 2.00 2.00

L1 rate 2.0 2.0 2.0 2.0 2.0

L1 coeff. 2.5× 10−4 2.5× 10−4 2.5× 10−4 2.5× 10−4 2.5× 10−4

L2 rate 2.0 2.0 2.0 2.0 2.0

L2 coeff. 2.8× 10−4 2.8× 10−4 2.8× 10−4 2.8× 10−4 2.8× 10−4

L∞ rate 2.0 2.0 2.0 2.0 2.0

L∞ coeff. 3.5× 10−4 3.5× 10−4 3.5× 10−4 3.5× 10−4 3.5× 10−4

Table 5: L1, L2, and L∞ values of the convergence rate (q) and convergence coefficient
(A) for the cell-centered density results for the smooth problem at t = 0.20. The top
table catalogues the results computed on meshes with 100 and 400 cells, and the bot-
tom table provides the results for meshes with 400 and 1600 cells. The results in the
second through sixth columns were obtained with different methods by which to gauge
the ratio of representative length scales that characterize the corresponding meshes.
The values in columns two (“Area/Nc”) through six (“Median”) correspond to taking
the ratio σ of the stated value for the coarse mesh divided by the corresponding value
for the fine mesh. The values highlighted in gray boxes are approporiate convergence
rates for this problem. The results for a given characteristic (e.g., L1 rate) on a given
pair of meshes (e.g., 100–400 cells) are identical for the ratios of different length mea-
sures to the two significant figures quoted; differences among certain values appeared
in the third or higher significant figure.
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Smooth Problem Cell-Centered Pressure Results

100–400 Cells

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.00 2.00 2.00

L1 rate 2.1 2.1 2.1 2.1 2.1

L1 coeff. 1.4× 10−4 1.4× 10−4 1.4× 10−4 1.4× 10−4 1.4× 10−4

L2 rate 2.1 2.1 2.1 2.1 2.1

L2 coeff. 1.8× 10−4 1.8× 10−4 1.8× 10−4 1.8× 10−4 1.8× 10−4

L∞ rate 2.0 2.0 2.0 2.0 2.0

L∞ coeff. 1.9× 10−4 1.9× 10−4 1.9× 10−4 1.9× 10−4 1.9× 10−4

400–1600 Cells

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.00 2.00 2.00

L1 rate 2.0 2.0 2.0 2.0 2.0

L1 coeff. 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4

L2 rate 2.0 2.0 2.0 2.0 2.0

L2 coeff. 1.4× 10−4 1.4× 10−4 1.4× 10−4 1.4× 10−4 1.4× 10−4

L∞ rate 1.9 1.9 1.9 1.9 1.9

L∞ coeff. 1.6× 10−4 1.6× 10−4 1.6× 10−4 1.6× 10−4 1.6× 10−4

Table 6: L1, L2, and L∞ values of the convergence rate (q) and convergence coefficient
(A) for the cell-centered pressure results for the smooth problem at t = 0.20. The
top table catalogues the results computed on meshes with 100 and 400 cells, and the
bottom table provides the results for meshes with 400 and 1600 cells. The results in the
second through sixth columns were obtained with different methods by which to gauge
the ratio of representative length scales that characterize the corresponding meshes.
The values in columns two (“Area/Nc”) through six (“Median”) correspond to taking
the ratio σ of the stated value for the coarse mesh divided by the corresponding value
for the fine mesh. The values highlighted in gray boxes are approporiate convergence
rates for this problem. The results for a given characteristic (e.g., L2 rate) on a
given pair of meshes (e.g., 400–1600 cells) are identical for the ratios of different
length measures to the two significant figures quoted; differences among certain values
appeared in the third or higher significant figure.
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Smooth Problem Vertex-Centered Velocity Results

121-441 Vertices

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.00 2.00 2.00

L1 rate 2.0 2.0 2.0 2.0 2.0

L1 coeff. 4.9× 10−4 4.9× 10−4 4.9× 10−4 4.9× 10−4 4.9× 10−4

L2 rate 2.0 2.0 2.0 2.0 2.0

L2 coeff. 4.9× 10−4 4.9× 10−4 4.9× 10−4 4.9× 10−4 4.9× 10−4

L∞ rate 2.0 2.0 2.0 2.0 2.0

L∞ coeff. 7.0× 10−4 7.0× 10−4 7.0× 10−4 7.0× 10−4 7.0× 10−4

441-1681 Vertices

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.00 2.00 2.00

L1 rate 2.0 2.0 2.0 2.0 2.0

L1 coeff. 4.7× 10−4 4.7× 10−4 4.7× 10−4 4.7× 10−4 4.7× 10−4

L2 rate 2.0 2.0 2.0 2.0 2.0

L2 coeff. 5.4× 10−4 5.4× 10−4 5.4× 10−4 5.4× 10−4 5.4× 10−4

L∞ rate 2.0 2.0 2.0 2.0 2.0

L∞ coeff. 7.6× 10−4 7.6× 10−4 7.6× 10−4 7.6× 10−4 7.6× 10−4

Table 7: L1, L2, and L∞ values of the convergence rate (q) and convergence coeffi-
cient (A) for the magnitude of the vertex-centered velocity for the smooth problem at
t = 0.20. The top table catalogues the results computed on meshes with 121 and 441
vertices, and the bottom table provides the results for meshes with 441 and 1681 ver-
tieces. The results in the second through sixth columns were obtained with different
methods by which to gauge the ratio of representative length scales that characterize
the corresponding meshes. The values in columns two (“Area/Nc”) through six (“Me-
dian”) correspond to taking the ratio σ of the stated value for the coarse mesh divided
by the corresponding value for the fine mesh. The values highlighted in gray boxes are
approporiate convergence rates for this problem. The results for a given characteristic
(e.g., L∞ rate) on a given pair of meshes (e.g., 121–441 vertices) are identical for the
ratios of different length measures to the two significant figures quoted; differences
among certain values appeared in the third or higher significant figure.
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4 Convergence Analysis of a Non-Smooth Prob-
lem

In this section, we again employ the techniques utilized in the previous section
to analyze 2-D hydrodynamics calculations on non-uniform meshes using a La-
grangian formation of the governing equations. We now consider a non-smooth
problem, which we require to have an exactly-computable solution; for the sake
of simplicity, we choose the spherically symmetric Noh problem [13, 14], com-
puted on a mesh in 2-D cylindrical coordinates. The Noh problem, which admits
a closed-form solution, is primarily a gauge of a hydrocode’s ability to transform
kinetic energy into internal energy. The global measure of convergence is again
the asymptotic convergence rate. As for the smooth problem of the previous sec-
tion, the hydrodynamics code being exercised here is part of the ASCI Shavano
project, with the numerical approach being a control volume, staggered-grid,
compatible, Lagrangian method [2, 4]. For this problem, a flux-limited artificial
viscosity term is added to capture shock compressions.

4.1 Exact Solution of the Noh Problem

The Noh problem [13, 14] is a configuration for the Euler equations of gas
dynamics in which the initial density is uniform, the initial specific internal
energy is negligible, and the initial velocity is uniform and directed toward the
origin, which is a reflecting boundary. The canonical configuration assumes
a polytropic gas of adiabatic index γ = 5/3, with initial density and initial
speed both unity; this problem has also been considered for materials with
other equations of state [1]. With these initial conditions, given in Table 8, this
configuration leads to a shock of infinite strength reflecting from the origin.

Assuming a semi-infinite domain, the Noh problem admits a closed-form,
self-similar solution for a polytropic gas equation of state. There exists a closed-
form solution for this problem having one-dimensional Cartesian, cylindrical, or
spherical symmetry; we consider only the spherically symmetric case. For the
polytropic gas equation of state, the solution at position r and time t is given
by the following relations, in which d identifies the geometry of the problem
(1 for Cartesian, 2 for cylindrical, and 3 for spherical), ρ0 is the uniform initial
density, and u0 is the uniform initial velocity [7]:

{
ρ, e, u

}
=





{
ρ0

(
γ+1
γ−1

)d
, 1

2u
2
0, 0
}
, if r < rS ,

{
ρ0 [1− (u0t/r)]

d−1
, 0, u0

}
, if r > rS ,

(40)

where the shock position rS is given by

rS = US t with shock speed US =
1

2
(γ − 1) |u0| . (41)
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Spherical Noh Problem Initial Conditions

ρ0 p0 e0 u0

r > 0 1 0 0 -1

Table 8: For each range of the spherical radial coordinate r, given are the initial
values of the density ρ0, pressure p0, specific internal energy e0, and radial velocity
u0 for the standard spherical Noh problem.

Spherical Noh Problem Solution at t = 0.6

ρ p e u

r < rS = 0.2 64 21 1
3 1/2 0

r > rS = 0.2 [1 + (0.6/r)]
2

0 0 -1

Table 9: For each range of the spherical radial coordinate r, either less than or greater
than the shock position rS , given are the density ρ, pressure p, specific internal energy
e, and radial velocity u for the standard spherical Noh problem.

The pressure is obtained from the above results together with the polytropic
equation of state p = (γ − 1) ρ e. With the initial conditions prescribed above,
the final time for the standard Noh problem used for comparison purposes is
taken to be t = 0.6, following the Noh’s original publication. Table 9 contains
the closed-form solution for the spherically-symmetric Noh problem at this time.

4.2 Computed Solution of the Noh Problem

The numerical solution for the spherical Noh problem was obtained in the case
of two-dimensional cylindrical geometry, with the axial coordinate z and cylin-
drical radial coordinate r (≡

√
x2 + y2 ). Only the first quadrant of the (r, z)-

plane was considered, with the initial grid tesselated by cells determined by
K radial lines emanating from the origin (between and including θ = 0 and
θ = π/2) and L − 1 circular arcs of nonzero radius centered at the origin, to-
gether with the point at the origin. The configurations considered consisted
of (K,L) = (16, 26), (31, 51), and (61, 101), corresponding to 375, 1500, and
6000 cells with 401, 1551, and 6101 vertices, respectively.

The initial conditions correspond to those listed in Table 8. The problems
were run to a final time of 0.6, with uniform, constant timesteps. Previous
experience has led us to believe that it is imperative that the final time of the
calculations being compared be precise. Consequently, to ensure that the fi-
nal simulation time was both accurate and consistent across calculations, the
timestep for each of these computations was identical. This timestep was slightly
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2-D Noh Problem Mesh Statistics

Mesh 1 Mesh 2 Mesh 3

Nc 375 1500 6000

Nv 401 1551 6101

Area/Nc 3.34× 10−4 8.37× 10−5 2.09× 10−5

Mean 3.34× 10−4 8.37× 10−5 2.09× 10−5

Minimum 1.88× 10−5 2.21× 10−6 2.67× 10−7

Maximum 1.59× 10−3 4.08× 10−4 1.03× 10−4

Median 1.70× 10−4 3.70× 10−5 8.72× 10−6

Table 10: Statistics for the Noh problem meshes at the three resolutions considered:
the number of cells, the number of vertices, the total area in the mesh divided by the
number of cells, and the mean, minimum, maximum, and median of the areas of all
cells in the mesh.

smaller than the minimum value calculated for the 61× 101 mesh using the de-
fault CFL limit. Consequently, this constraint implied that the effective CFL
number for the coarser calculations was well below that which would have oth-
erwise been used for these calculations.

Table 10 contains information about the meshes at the final computational
time. We provide values for various characteristics corresponding to the the
total mesh area divided by the number of cells, and the minimum, maximum,
mean, median over the set of all cell areas in the (r, z)-computational plane.
Unlike the previous smooth problem, there is a significant difference between the
minimum and maximum zone sizes, because of both the distortion of the mesh
with the calculation and the convergence of the initial mesh at the origin. The
variation in values in this table is suggestive of the challenge that Lagrangian
codes present in the assignment of a truly representative length scale for the
mesh cells.

4.3 Convergence Analysis of the Noh Problem

An ASCI Shavano project code was used to compute numerical solutions to
the compressible gas dynamics equations for the problem described above. We
consider asymptotic convergence analysis for two cell-centered quantities, the
density and pressure, together with the vertex-centered velocity field. In this
section, we describe the outcome of this study and catalogue the results in
several tables.

The computed norms of the difference between calculated and exact solutions
over the computational meshes (as characterized in Table 10) are provided in
Table 11. The problem we consider here is formulated in 2-D cylindrically-
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2-D Noh Problem Error Norms

ρ p |(u, v)|
L1 6.0 2.1 1.3× 10−1

Mesh 1 L2 1.2× 101 4.7 3.1× 10−1

L∞ 5.5× 101 1.6× 101 9.9× 10−1

L1 3.4 1.1 6.7× 10−2

Mesh 2 L2 8.7 3.5 2.3× 10−1

L∞ 5.4× 101 1.8× 101 1.0

L1 1.8 6.1× 10−1 3.1× 10−2

Mesh 3 L2 6.2 2.6 1.5× 10−1

L∞ 5.3× 101 2.0× 101 1.0

Table 11: L1, L2, and L∞ values of the norm of the difference between the exact
and computed solutions to the Noh problem for the density (ρ), pressure (p), and the
magnitude of the velocity (|(u, v)|) at t = 0.6 for the meshes characterized in Table 10.
These values are computed according to the procedures outlined in §2.

symmetric geometry, unlike the smooth problem discussed in §2.3. Conse-
quently, the norm here is obtained as an estimate of a volume quadrature using
the data in (r, z)-plane; that is, the volume element in the quadrature is taken
to be 2π r dr dz,4 with the value of r in this expression taken to be the cell-
centered r-coordinate.

The values of the L1 and L2 norms decrease as a function of increasing
mesh resolution for these calculations, while the value of the L∞ norm is nearly
independent of mesh resolution. From these trends we immediately infer that
the computed solution is indeed converging in the L1 and L2 norms and not
converging in the L∞ norm. The non-convergent behavior suggested by the L∞
norm values is not unexpected for this problem containing a shockwave.

The inferences of convergent behavior are made precise in Tables 12, 13,
and 14, which catalogue the convergence parameters for the computed values
of density, pressure, and velocity magnitude on pairs of meshes when compared
with the corresponding exact solution values. In these tables, the quantities in
each column correspond to a chosen value of the ratio, σ, of coarse-to-fine char-
acteristic length associated with that calculation, as shown in the second row.
We highlight the convergence rates calculated using the square root of the area
divided by the number of cells (second column), and the mean (third column)
and median (sixth column) over the set of zone sizes for the entire computa-
tional mesh at the final time. We believe that these highlighted convergence

4The cylindrical-coordinate volume element, 2π r dr dz, differs from the planar Cartesian
area element, dx dy, used in the quadratures for the previously considered smooth problem.
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rates are perhaps the best representatives of the computations.
The results in Tables 12–14 exhibit several features of interest. For example,

the convergence rates vary with the choice of characteristic length scale. This
result is a direct consequence of the variation in these values due to nonunifor-
mities in the mesh, as suggested in Table 10.

The convergence rates also vary significantly with the norm used to mea-
sure the error; this result is consistent with the fact that the exact solution to
this problem is neither continuous nor differentiable. Recall that the previous
problem, for which the exact solution is arbitrarily smooth (i.e., C∞), exhib-
ited convergence rates (of approximately two) that were all effectively the same,
regardless of the norm used to gauge the error, as the results in Tables 5–7
show. Importantly for the case at hand, the computed solutions are converging
at approximately first order in the L1 norm; this finding is consistent with both
theoretical and numerical results for Eulerian codes on problems containing
shocks [6, 8]. These results also demonstrate that L1 norm is the appropriate
norm with which to gauge convergence for problems with discontinuities.

These quantitative results, together with those in §3.3, constitute compelling
evidence that the hydrodynamics algorithm is properly implemented in the
ASCI Shavano project code that performed these calculations.
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Noh Problem Cell-Centered Density Results

375–1500 Cells

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.92 1.97 2.14

L1 rate 0.80 0.80 0.52 0.81 0.72

L1 coeff. 1.5× 102 1.5× 102 1.0× 102 8.3× 101 1.4× 102

L2 rate 0.46 0.46 0.30 0.46 0.41

L2 coeff. 7.4× 101 7.4× 101 6.0× 101 5.4× 101 7.2× 101

L∞ rate 2.5× 10−2 2.5× 10−2 1.6× 10−2 2.5× 10−2 2.2× 10−2

L∞ coeff. 6.0× 101 6.0× 101 6.0× 101 5.9× 101 6.0× 101

1500–6000 Cells

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.87 1.99 2.10

L1 rate 0.90 0.90 0.59 0.91 0.84

L1 coeff. 2.4× 102 2.4× 102 1.6× 102 1.2× 102 2.5× 102

L2 rate 0.50 0.50 0.33 0.50 0.47

L2 coeff. 9.1× 101 9.1× 101 7.4× 101 6.2× 101 9.4× 101

L∞ rate 1.4× 10−2 1.4× 10−2 9.3× 10−3 1.4× 10−2 1.3× 10−2

L∞ coeff. 5.7× 101 5.7× 101 5.7× 101 5.7× 101 5.7× 101

Table 12: L1, L2, and L∞ values of the convergence rate (q) and convergence coef-
ficient (A) for the cell-centered density results for the Noh problem at t = 0.6. The
top table catalogues the results computed on meshes with 375 and 1500 cells, and the
bottom table provides the results for meshes with 1500 and 6000 cells. The results
in the second through sixth columns were obtained with different methods by which
to gauge the ratio of representative length scales that characterize the corresponding
meshes. The values in columns two (“Area/Nc”) through six (“Median”) correspond
to taking the ratio σ of the stated value for the coarse mesh divided by the corre-
sponding value for the fine mesh. The values highlighted in gray boxes are perhaps
the most appropriate convergence rates for this problem.
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Noh Problem Cell-Centered Pressure Results

375–1500 Cells

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.92 1.97 2.14

L1 rate 0.86 0.86 0.56 0.88 0.78

L1 coeff. 6.5× 101 6.5× 101 4.3× 101 3.5× 101 6.1× 101

L2 rate 0.42 0.42 0.27 0.42 0.38

L2 coeff. 2.5× 101 2.5× 101 2.0× 101 1.8× 101 2.4× 101

L∞ rate −2.2× 10−1 −2.2× 10−1 −1.4× 10−1 −2.2× 10−1 −2.0× 10−1

L∞ coeff. 6.4 6.4 7.2 7.6 6.6

1500–6000 Cells

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.87 1.99 2.10

L1 rate 0.92 0.92 0.60 0.93 0.86

L1 coeff. 8.7× 101 8.7× 101 5.9× 101 4.3× 101 9.2× 101

L2 rate 0.46 0.46 0.30 0.46 0.43

L2 coeff. 3.0× 101 3.0× 101 2.5× 101 2.1× 101 3.1× 101

L∞ rate −1.4× 10−1 −1.4× 10−1 −8.9× 10−2 −1.4× 10−1 −1.3× 10−1

L∞ coeff. 9.6 9.6 1.0× 101 1.1× 101 9.6

Table 13: L1, L2, and L∞ values of the convergence rate (q) and convergence coef-
ficient (A) for the cell-centered pressure results for the Noh problem at t = 0.6. The
top table catalogues the results computed on meshes with 375 and 1500 cells, and the
bottom table provides the results for meshes with 1500 and 6000 cells. The results
in the second through sixth columns were obtained with different methods by which
to gauge the ratio of representative length scales that characterize the corresponding
meshes. The values in columns two (“Area/Nc”) through six (“Median”) correspond
to taking the ratio σ of the stated value for the coarse mesh divided by the corre-
sponding value for the fine mesh. The values highlighted in gray boxes are perhaps
the most appropriate convergence rates for this problem.
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Noh Problem Vertex-Centered Velocity Results

401–1551 Vertices

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.92 1.97 2.14

L1 rate 1.0 1.0 0.65 1.0 0.91

L1 coeff. 7.6 7.6 4.7 3.7 7.1

L2 rate 0.45 0.45 0.29 0.46 0.41

L2 coeff. 1.9 1.9 1.5 1.4 1.8

L∞ rate −1.6× 10−2 −1.6× 10−2 −1.0× 10−2 −1.6× 10−2 −1.4× 10−2

L∞ coeff. 0.93 0.93 0.94 0.94 0.93

1551–6101 Vertices

Area/Nc Mean Min Max Median

σ 2.00 2.00 2.87 1.99 2.10

L1 rate 1.1 1.1 0.72 1.1 1.0

L1 coeff. 1.2× 101 1.2× 101 7.6 5.3 1.3× 101

L2 rate 0.54 0.54 0.36 0.55 0.51

L2 coeff. 2.9 2.9 2.3 1.9 3.0

L∞ rate −9.6× 10−3 −9.6× 10−3 −6.3× 10−3 −9.7× 10−3 −9.0× 10−3

L∞ coeff. 0.96 0.96 0.96 0.96 0.96

Table 14: L1, L2, and L∞ values of the convergence rate (q) and convergence coef-
ficient (A) for the magnitude of the vertex-centered velocity for the Noh problem at
t = 0.6. The top table catalogues the results computed on meshes with 401 and 1551
vertices, and the bottom table provides the results for meshes with 1551 and 6101 ver-
tieces. The results in the second through sixth columns were obtained with different
methods by which to gauge the ratio of representative length scales that character-
ize the corresponding meshes. The values in columns two (“Area/Nc”) through six
(“Median”) correspond to taking the ratio σ of the stated value for the coarse mesh
divided by the corresponding value for the fine mesh. The values highlighted in gray
boxes are perhaps the most appropriate convergence rates for this problem.

25



      

5 Summary

This report describes a method for conducting asymptotic convergence analysis
for a 2-D Lagrangian, compressible hydrodynamics algorithm based on an un-
structured mesh. The documented results of such a study provide a foundational
element of verification analysis for the numerical solution of discretized PDEs.
Convergence analysis naturally suggests that the asymptotic convergence rate
be highlighted as a principal gauge of code verification.

The two main complications of this analysis for a Lagrangian code are the
irregular cell geometries and the dynamic evolution of the cells that constitute
the mesh. In §2, we describe how to account for this increased complexity when
estimating the asymptotic convergence parameters. In particular, we explain the
procedures by which convergence rates and coefficients are obtained for both
cell-centered and vertex-centered variables. There is no single unambiguous
measure of the characteristic length corresponding to the cells in a non-uniform
mesh; such meshes appear, e.g., in Lagrangian, AMR, and ALE calculations.
We propose several possible such measures and employ them in the subsequent
analysis.

In §3, we describe the results of this analyisis for computed solutions of a 2-D,
Cartesian geometry, smooth flow problem with periodic boundary conditions.
The velocity and density/pressure perturbations for this problem are initially
out of phase and remain so for the entire calculation, oscillating as a standing
wave in the computational domain. By the nature of this smooth problem,
the various measures with which to gauge the characteristic length scale of the
computational mesh are virtually identical. The closed-form solution obtained
is an exact solution of the full compressible flow equations only in the case
of vanishingly small initial perturbation amplitude; numerically, we find this
idealized behavior to be exhibited for non-dimensional velocity perturbation
amplitudes of order 10−4. Convergence analysis conducted on the computed
results shows that the software implementation achieves the theoretical second-
order spatial convergence for the cell-centered density and pressure as well as
the vertex-centered velocity vector magnitude in all norms (i.e., L1, L2, and
L∞), consistent with the smooth nature of this problem.

The second case, in §4, consists of the well-known Noh problem, which de-
scribes the self-similar, spherically symmetric flow of a compressible, polytropic
gas that is initially flowing uniformly inward toward a reflective origin. We
consider this problem for the case of two-dimensional cylindrical (r, z) coor-
dinates on three different meshes. The analyses of the cell-centered density
and pressure as well as the vertex-centered velocity magnitude demonstrate ap-
proximately first-order convergence in the L1 norm when the total mesh area
divided by the number of cells as well as the mean and median of the mesh cell
sizes are used to define a characteristic length. The L2 and L∞ results are of
lower order, consistent with the notion that these norms are not the appropriate
yardstick by which to measure numerical error for problems that contain discon-
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tinuous features (e.g., shocks). These results exhibit the behavior anticipated
for a compressible hydrodynamics algorithms in the presence of discontinuities.
Moreover, they are fully comparable to the results for Eulerian code calculations
of problems with shocks and to the results for 1-D Lagrangian calculations of a
Riemann shock-tube problem [8].

In this report, we demonstrate the viability of asymptotic converence anal-
ysis for a 2-D Lagrangian compressible hydrodynamics algorithm based on an
unstructured mesh. Although we consider only two idealized problems (one with
a smooth solution, one with a discontinuous solution), this approach could be
extended to calculation verification of problems for which no exactly computable
solution exists (see, e.g., [17]). Such analyses, which would require the develop-
ment and application of software to accurately and conservatively interpolate
data between disparate unstructured meshes (see, e.g., [12]), would provide a
valuable contribution to the body of evidence desired for the verification of
Lagrangian hydrocodes.
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